Nanometer-Scale III-V Electronics

J. A. del Alamo

Microsystems Technology Laboratories, MIT

The Age of Silicon Symposium

MIT, July 25, 2014

Acknowledgements:

- D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, W. Lu, A. Vardi, N. Waldron, L. Xia, X. Zhao
- Sponsors: Intel, FCRP-MSD, ARL, SRC, NSF, Sematech, Samsung
- Labs at MIT: MTL, NSL, SEBL

Moore's Law

Moore's Law = exponential increase in transistor density

What if Moore's Law had stopped in 1990?

What if Moore's Law had stopped in 1980?

What if Moore's Law had stopped in 1970?

What if Moore's Law had never happened?

Moore's Law

How far can Si support Moore's Law?

Transistor scaling Voltage scaling

Power management demands reduction in supply voltage.

Supply voltage reduction saturating in recent years

Voltage scaling → Si transistor **performance suffers**

Transistor current density:

Transistor performance saturated in recent years

Options for post-Si CMOS

Different lattice constant for n-FETs and p-FETs

Electron injection velocity: InGaAs vs. Si

Measurements in High Electron Mobility Transistors (HEMTs):

- • v_{ini} (InGaAs) increases with InAs fraction in channel
- •v_{inj}(InGaAs) > 2v_{inj}(Si) at less than half V_{DD}
- •~100% ballistic transport at L_g~30 nm

InGaAs HEMT: high-frequency record vs. time

Best high-frequency performance of any transistor on any material system

InGaAs Electronics Today

TriQuint and Skyworks Power iPhone 5

UMTS-LTE PA moduleChow, MTT-S 2008

40 Gb/s modulator driverCarroll, MTT-S 2002

Tessmann, GaAs IC 199977 GHz transceiver

Bipolar/E-D PHEMT process

Henderson, Mantech 2007

Single-chip WLAN MMIC, Morkner, RFIC 2007

InGaAs HEMT vs. MOSFET

HEMT not suitable for logic: too much gate leakage current

MOSFET incorporates gate oxide \rightarrow gate leakage suppressed

InGaAs MOSFETs vs. HEMTs: historical evolution

Progress reflects improvements in oxide/III-V interface

What made the difference?Atomic Layer Deposition (ALD) of oxide

ALD eliminates surface oxides that pin Fermi level

 \rightarrow "Self cleaning"

- $\bullet~$ First observed with Al $_2\textsf{O}_3$, then with other high-K dielectrics
- First seen in GaAs, then in other III-Vs

InGaAs MOSFET: possible designs

Enhanced gate control \rightarrow enhanced scalability

Self-Aligned InGaAs Quantum-Well MOSFETs

- •Channel: $In_{0.7}Ga_{0.3}As/InAs/In_{0.7}Ga_{0.3}As$ (1/2/5 nm)
- \bullet Gate oxide: $HfO₂$ (2.5 nm, EOT~0.5 nm)
- \bullet Self-aligned contacts $(L_{side}$ ~5 nm)
- \bullet Si compatible process (RIE, metals)

0.6

 0.8 R_{on}=224 Ω .µm

 $\sim 0.4 V$

 $V_{gs} - V_t = 0.5 V$

1․Օ**r** L_ց=20 nm

InGaAs double-gate Fin-MOSFET

Key enabling technologies:

- •BCl ³/SiCl ⁴/Ar RIE
- •digital etch

Zhao, EDL 2014

Vardi, DRC 2014

Vertical nanowire InGaAs MOSFETs

- \bullet Nanowire MOSFET: ultimate scalable transistor
- •Vertical NW: uncouples footprint scaling from L_g scaling
- •Top-down approach based on RIE + digital etch

Si integration: InGaAs SOI MOSFETs

III ‐ V bonded SOI process of IBM Zurich: Czornomaz, IEDM 2012

Conclusions: exciting future for InGaAs electronics on Silicon

- Most promising material for ultra-high frequency and ultra-high speed applications \rightarrow first THz transistor?
- Most promising material for n-MOSFET in a post-Si CMOS logic technology \rightarrow first sub-10 nm CMOS logic?
- InGaAs + Si integration:

→ THz + CMOS + optics integrated systems?